Environmental Education and Sustainable Development Open Access

2025, 14(1): 195-215

DOI: 10.30473/EE.2025.73570.2812

ORIGINAL ARTICLE

Prioritizing Influential Indicators in Creating a Green University According to the Fuzzy Delphi Approach

Hamid Maleki 💿

Associate Professor, Department of Education, Payame Noor University, Tehran, Iran

Correspondence: Hamid Maleki

Email: dr.maleki@pnu.ac.ir

Received: 28.Jan.2025

Received in revised form: 22.May.2025

Accepted: 13.Jun.2025

How to cite:

Maleki, H., (2025). Prioritizing Influential Indicators in Creating a Green University According to the Fuzzy Delphi Approach. Journal of Environmental Education and Sustainable Development, 14(1), 195-215. (DOI: 10.30473/EE.2025.73570.2812)

ABSTRACT

The aim of this study is to prioritize the indicators influencing the creation of a green university using the fuzzy Delphi approach. First, through theoretical studies and semistructured interviews with 50 experts in the fields of environment, sustainable development, and green universities, 20 key indicators were identified and finalized. These indicators include optimal energy consumption, water resource management, waste reduction, green building design, sustainable transportation, and modern technologies. To ensure the validity of the data collection instrument, content validity was confirmed by experts, and the reliability of the tool was verified using Cronbach's alpha (0.898), indicating high validity and reliability of the questionnaire. The Delphi process was conducted in two consecutive rounds, and fuzzy techniques such as triangular fuzzy numbers and fuzzy pairwise comparison matrices were employed for data analysis. The findings showed that three main indicators (energy consumption management, reduction of resource consumption, and enhancement of environmental awareness) had the highest priorities. Moreover, the experts emphasized that the effective implementation of green strategies requires the active participation of all university members, including students, faculty, and staff. The results of this study can serve as a basis for strategic planning and decision-making toward the development of sustainable and green universities.

KEYWORDS

Prioritization, Green University, Fuzzy Delphi, Intelligent Systems.

Introduction

In the context of escalating environmental crises and the pressing global call for sustainable development, higher education institutions have assumed a pivotal role in advancing ecological awareness environmental stewardship. Universities, as centers of research, learning, and innovation, bear a significant responsibility for shaping the knowledge, attitudes, and behaviors of future leaders who will determine the trajectory of sustainable development. Against this backdrop, the concept of the "Green University" has emerged as an essential paradigm within higher education, one that seeks to minimize the ecological footprint of campuses while integrating sustainability principles into academic, operational, and cultural dimensions (Roshani et al., 2023; Pouramini & Bashkooh, 2023).

The Green University model extends beyond environmental management; it encompasses an institutional commitment to sustainability through teaching, research, community engagement, and governance. It promotes the efficient use of resources, the development of environmentally friendly infrastructure, the adoption of renewable energy, and the cultivation of sustainable lifestyles among students and staff (Tajeddini & Nasiri, 2022; Mirfalah Damouchali & Kiamoghadam, 2022). Moreover, universities have become testbeds for technological innovation, social transformation, and policy experimentation in sustainability (Bahmaniyari et al., 2020; Vahidi et al., 2020).

Despite increasing attention to sustainability in higher education, many institutions still lack a systematic and data-driven framework for identifying and prioritizing the most influential indicators in achieving green university status. In Iran, as in many developing countries, there is limited empirical research applying quantitative decision-making models to this issue. The present study therefore aimed to prioritize the key indicators influencing the creation of green universities in Iran by employing the Fuzzy Delphi Method (FDM) — a hybrid approach that integrates expert consensus with fuzzy logic to address ambiguity and uncertainty in human judgments.

Previous studies across various countries have identified a broad array of sustainability indicators in university contexts, including energy management (Roshani et al., 2023), waste reduction (Esmaili et al., 2022), water conservation (Moghimi et al., 2023), and sustainable mobility (Kyrychenko et al., 2021). Furthermore, global experiences have demonstrated that the success of Green Universities depends not only on technological investments but also on cultural transformation, stakeholder engagement, and educational reform (Atici et al., 2021; Ali & Anufriev,

2020).

Kyrychenko et al. (2021) emphasized the role of universities in building a sustainable public health system, while Liu and Ren (2020) explored strategies for designing energy-efficient campus buildings. Similarly, Gholami et al. (2020) identified the institutional and managerial barriers to implementing green campus operations. Within the Iranian context, recent research has underscored the need for a localized framework that incorporates environmental, social, and economic dimensions of sustainability (Roshani et al., 2023; Pouramini & Bashkooh, 2023).

However, the literature also reveals that many studies have focused on isolated aspects of sustainability, such as green buildings or waste management, rather than establishing comprehensive, prioritized frameworks for action (Tshivhase & Bisschoff, 2023).

Hence, this study aimed to fill this gap by developing and prioritizing a holistic set of indicators that integrate environmental, social, economic, and technological perspectives relevant to Iranian higher education institutions.

Methodology

This study employed the Fuzzy Delphi Method (FDM) to identify, refine, and prioritize the indicators most influential in establishing Green Universities. The FDM combines the traditional Delphi technique's iterative consensus process with fuzzy logic, enabling more nuanced handling of linguistic uncertainties in expert opinions.

Participants and Data Collection: Fifty experts participated in the Delphi rounds, selected through purposive sampling to ensure high levels of expertise and diversity. Participants included university professors, environmental consultants, green project managers, and sustainability researchers, representing both public (70%) and private (30%) universities in Iran. The experts' age distribution ranged from 30 to over 60 years, and their professional experience averaged between 11 and 20 years. Approximately half held PhD degrees, and the remainder Master's degrees.

Instrument Development and Validation: The research instrument was developed through an extensive literature review and semi-structured interviews with domain experts. Initial interviews and theoretical analysis yielded twenty potential indicators related to environmental, managerial, and technological sustainability (Tables 2–4 in the main article). To ensure reliability, Cronbach's alpha was 0.898, confirming excellent internal consistency. Content validity was established through expert review.

The Delphi process was conducted in two rounds.

In the first round, participants evaluated the relevance and impact of each indicator using linguistic scales (e.g., "very low," "low," "average," "high," "very high"), which were subsequently converted into triangular fuzzy numbers for quantitative analysis. Indicators with a defuzzification score below 0.7 were excluded after the first round.

In the second round, experts re-evaluated all indicators based on the feedback and aggregated results from the previous stage. Fuzzy aggregation and defuzzification techniques were used to calculate final scores and establish a ranked list of prioritized indicators. The inclusion of triangular fuzzy numbers and defuzzification allowed for precise quantification of expert consensus while managing subjectivity and uncertainty inherent in linguistic judgments (Anthony, 2021; Köhler & Kaiser, 2021).

Results

Round One Findings: In the first Delphi round, 12 of the 20 indicators achieved the acceptance threshold (≥ 0.7). These included Optimal Energy Consumption, Waste Reduction, Green Building Design, Sustainable Transportation, Environmental Education Awareness, Promoting a Culture of Sustainability, Green Space Development, Carbon Management, Strategic Planning for Sustainability, Encouraging Sustainable Research, International Collaboration, and Use of Solar Energy. The remaining eight indicators Hazardous Waste Management, (including Establishment of Green Innovation Centers, Circular Economy Development, Procurement Policy Reform, and Community Engagement) were initially rejected due to lower defuzzification scores.

Round Two Findings: In the second round, expert consensus increased significantly. All 20 indicators exceeded the acceptance threshold (≥ 0.7), with defuzzified scores ranging between 0.80 and 0.89. This indicated a strong convergence of opinions among participants regarding the multifaceted nature of the Green University concept.

The final ranking revealed that Promoting a Culture of Sustainability ranked highest (defuzzification = 0.89; final weight = 0.534), followed closely by Green Building Design, Environmental Education and Awareness, and Green Space Development (defuzzification = 0.87 each).

Indicators related to Sustainable Transportation, Carbon Management, Encouraging Sustainable Research, and International Collaboration shared similar scores (0.86). In contrast, the Establishment of Green Innovation Centers ranked lowest (defuzzification = 0.80; final weight = 0.480), suggesting that while innovation is valuable, cultural and behavioral transformations are considered more immediate priorities within the Iranian context.

Interpretation of Results: The prioritization pattern reflects an integrated perspective that values cultural and educational interventions as foundational to sustainability implementation. While technological measures (e.g., energy management, renewable energy) and managerial strategies (e.g., strategic planning, procurement reform) are essential, they are perceived as secondary to the human and cultural dimensions that drive long-term behavioral change (Aboramadan, 2022; Wu, 2021).

The study's findings emphasize that achieving a green university requires a balanced approach encompassing environmental, social, and economic dimensions. In the second round of the Delphi analysis, expert consensus increased, and all twenty indicators achieved defuzzification scores above 0.7. highest-ranked indicator, promoting sustainability culture (defuzzification = 0.89; final weight = 0.534), underscores that institutional transformation begins with people, not infrastructure. This confirms the Persian results indicating that cultural and educational dimensions rank higher than technological and economic ones. This finding is consistent with Aboramadan (2022),demonstrated that green human resource management and employee engagement are key mediators of sustainable behavior in universities.

Indicators such as green building design. green environmental education, and space development (defuzzification = 0.87) jointly ranked second, highlighting the importance of physical environment design and learning processes in fostering sustainability. These results align with international research emphasizing the role of built environments in reducing carbon emissions and promoting environmental literacy (Atici et al., 2021; Liu & Ren, 2020). Likewise, green space development supports psychological well-being and environmental aesthetics, fostering campus environments that inspire sustainable practices (Köhler & Kaiser, 2021).

Indicators including sustainable transportation, carbon management, encouraging sustainable research, and international collaboration (defuzzification 0.86followed closely, demonstrating the importance of operational strategies, advanced technologies, and cooperation in achieving sustainability. This finding supports Tshivhase & Bisschoff (2023), who stressed the value of cross-institutional collaboration for benchmarking and knowledge exchange.

Furthermore, hazardous waste management and procurement policy reform received relatively high scores, reflecting increased awareness among Iranian universities of the need for effective policy integration. Procurement policies influence supply chains and resource use, while proper management of chemical waste prevents environmental

contamination—both crucial for institutional compliance with sustainability standards (Vahidi et al., 2020).

In contrast, green innovation centers ranked lowest (defuzzification = 0.80; final weight = 0.480), while circular economy development also received a lower ranking. This may stem from limited infrastructure, resource constraints, and the early developmental stage of green innovation ecosystems in Iranian higher education. However, these indicators possess significant long-term potential for scaling up sustainability through research and entrepreneurship (Gholami et al., 2020).

Implications and Recommendations: The findings provide actionable insights for policymakers, university administrators, and sustainability practitioners seeking to operationalize green university initiatives.

Cultural Transformation: The leading role of promoting sustainability culture implies that awareness campaigns, training programs, and participatory governance should precede or accompany technical interventions. Embedding sustainability values into curricula and student life is essential (Atici et al., 2021; Wu, 2021).

Operational Sustainability: The inclusion of sustainable transportation and carbon management as mid-ranked priorities reflects the operational dimensions of sustainability. Initiatives such as bicycle-friendly infrastructure, electric vehicles, and carbon auditing can significantly reduce universities' ecological footprints (Kyrychenko et al., 2021; Ali & Anufriev, 2020).

Integrated Strategic Planning: University management should align sustainability objectives across departments, linking academic activities, infrastructure development, and administrative policies under unified strategic plans (Anthony, 2021).

Investment in Green Infrastructure: Although cultural aspects ranked higher, the importance of green building design and renewable energy adoption remains critical. Universities should implement energy audits, use smart systems for resource optimization, and adopt bioclimatic architectural principles (Behzadpour & Khakzand, 2021).

Monitoring and Evaluation: The inclusion of continuous monitoring and evaluation among the approved indicators highlights the necessity of measurable benchmarks such as carbon footprint analysis and waste-tracking systems (Shahriari et al., 2020).

International Benchmarking: Participation in international sustainability rankings (e.g., UI

GreenMetric) and partnerships can facilitate mutual learning and external validation of progress (Atici et al., 2021).

Policy and Governance: Revising procurement policies and establishing institutional frameworks for hazardous waste management will ensure long-term compliance with environmental standards and reduce institutional risks (Fawehinmi et al., 2020; Vahidi et al., 2020).

Research and Innovation: Despite lower rankings, developing green innovation centers and promoting sustainability research remain key for fostering innovation ecosystems and student entrepreneurship (Köhler & Kaiser, 2021).

Conclusion

This research contributes to the growing body of knowledge on sustainability in higher education by developing and empirically validating a set of prioritized indicators for creating green universities in Iran. Using the Fuzzy Delphi Method, the study successfully captured expert consensus and reduced uncertainty in prioritizing twenty interrelated indicators.

The results underscore that the path toward a green university is multidimensional, requiring simultaneous attention to cultural change, environmental management, technological advancement, and institutional governance. Among these, promoting sustainability culture emerged as the cornerstone, reaffirming the centrality of human awareness and participation in achieving sustainability goals.

By aligning with global findings (Aboramadan, 2022; Atici et al., 2021; Roshani et al., 2023) while contextualizing them within Iran's socio-economic and educational realities, the study offers both theoretical and practical implications. The proposed indicator hierarchy can serve as a strategic roadmap for policymakers and university leaders to plan, implement, and evaluate green initiatives effectively.

Future research could extend this framework through comparative cross-country studies, longitudinal assessments of implementation progress, and integration with quantitative performance metrics such as energy audits, life-cycle analyses, and sustainability reporting standards.

Ultimately, this study affirms that the transformation toward green universities is not solely a technological or infrastructural endeavor—it is fundamentally a cultural evolution rooted in education, awareness, and collaborative action across all levels of the academic community.

آموزش محيطزيست و توسعه پايدار

سال چهاردهم، شماره اول، ۱۴۰۴ (۱۹۵–۲۱۵)

DOI: 10.30473/EE.2025.73570.2812

«مقاله پژوهشي»

اولویت بندی شاخصهای تأثیر گذار در ایجاد دانشگاه سبز با توجه به رویکرد دلفی فازی

حمید ملکی 📵

دانشیار، گروه علوم تربیتی، دانشگاه پیام نور، تهران، ایران

> نویسنده مسئول: حمید ملکی رایانامه: hasani.rafigh@iau.ac.ir

> > تاریخ دریافت: ۱۴۰۳/۱۱/۰۹ تاریخ بازنگری: ۱۴۰۴/۰۳/۰۱ تاریخ پذیرش: ۱۴۰۴/۰۳/۲۳

استناد به این مقاله:

ملکی، حمید. (۱۴۰۴). اولویت بندی شاخصهای تأثیرگذار در ایجاد دانشگاه سبز با توجه به رویکرد دلفی فازی، فصلنامه علمی آموزش محیط زیست و توسعه پایدار، ۱۹۵(۱)، ۱۹۵۸.

(DOI: 10.30473/EE.2025.73570.2812)

چکیده

هدف این پژوهش، اولویتبندی شاخصهای مؤثر در ایجاد دانشگاه سبز با بهره گیری از روش دلفی فازی است. ابتدا با استفاده از مطالعات نظری و انجام مصاحبههای نیمهساختاریافته با ۵۰ نفر از خبرگان در حوزههای محیطزیست، توسعه پایدار و دانشگاه سبز، ۲۰ شاخص کلیدی شناسایی و نهایی شد. این شاخصها شامل مؤلفههایی نظیر مصرف بهینه انرژی، مدیریت منابع آب، کاهش تولید زباله، طراحی ساختمانهای سبز، حملونقل پایدار و فناوریهای نوین بودند. برای اعتبارسنجی ابزار گردآوری دادهها، از روایی محتوایی با تأیید متخصصان استفاده شد. همچنین، پایایی ابزار با آزمون آلفای کرونباخ برابر با ۸۹۸، تأیید شد که نشان دهنده اعتبار و قابلیت اعتماد بالای پرسشنامه است. فرآیند دلفی در دو راند متوالی انجام شد و از تکنیکهای فازی مانند اعداد فازی مثلثی و ماتریس مقایسات زوجی فازی برای تحلیل دادهها بهره گرفته شد یافتههای تحقیق نشان داد که سه شاخص اصلی شامل «مدیریت مصرف انرژی»، «کاهش مصرف منابع» و «افزایش آگاهی نشان داد که سه شاخص اصلی شامل «مدیریت مصرف انرژی»، «کاهش مصرف منابع» و «افزایش آگاهی زیست محیطی» از بالاترین اولویت برخوردارند. همچنین، خبرگان تأکید کردند که استقرار مؤثر راهبردهای سبز مستلزم مشارکت فعال تمام اعضای دانشگاه ازجمله دانشجویان، اعضای هیئت علمی و کارکنان است. نتایج این مطالعه می تواند به عنوان مبنایی برای برنامهریزی استراتژیک و تصمیم گیری در راستای توسعه دانشگاههای پایدار و سبز مورد استفاده قرار گیرد.

واژههای کلیدی

اولویتبندی، دانشگاه سبز، دلفی فازی، سیستمهای هوشمند.

مقدمه

با توجه به بحرانهای زیستمحیطی و نقش دانشگاهها در تربیت نیروی متخصص، ایجاد دانشگاههای سبز به ضرورتی جهانی بدل شده است. این دانشگاهها علاوه بر کاهش اثرات زیستمحیطی، الگویی جامع برای پایداری اجتماعی و اقتصادی ارائه میدهند. در این مسیر، شاخصهایی چون مدیریت انرژی، کاهش زباله و بهرهوری منابع طبیعی اهمیت زیادی دارند Roshani et al., 2023; Pouramini & Bashkooh,) 2023). همچنین فرهنگسازی، اصلاح رفتارهای زیستمحیطی و مشارکت جامعه دانشگاهی از مؤلفههای اصلی هستند که در کنار سیاستهای کلان ملی و محلی، زمینهساز Tajeddini & Nasiri, 2022;) تحول پايدار مي شوند Mirfalah Damouchali & Kiamoghadam, 2022). مطالعات نشان مىدهد همكارىهاى بينالمللى و بهرهگیری از تجربیات جهانی نقش مهمی در توسعه ساختارهای بومی دانشگاههای سبز دارند. عواملی مانند ارتقای فناوری اطلاعات، کاهش ردپای کربنی، مدیریت منابع و توجه به هزینههای اقتصادی از شاخصهای کلیدی محسوب مى شوند (Bahmaniyari et al., 2022; Vahidi et al., مى شوند 2020). دانشگاههای سبز با آموزش و پژوهش میانرشتهای، توسعه مهارتهای زیستمحیطی و تغییر رفتارهای فردی و سازمانی، الگویی برای توسعه پایدار جامعه فراهم می آورند Ghoran Orimi Akbari et al., 2022; Esmaili et) al., 2022). از منظر جهانی، این دانشگاهها نقشی محوری در تحقق اهداف توسعه پایدار سازمان ملل دارند و با استفاده از فناوریهای نوین، بهرهوری منابع و کاهش انتشار کربن را Yadegari Dehdakordi & Nilashi,) بهبود مى بخشند 2022; Atici et al., 2021). علاوه بر مزاياي زیستمحیطی، آنها جایگاه رقابتی مؤسسات آموزش عالی را در سطح بین المللی تقویت کرده و بهبود شهرت و جذب منابع مالي را به همراه دارند (Kyrychenko et al., 2021; Ali & Anafriyev, 2020). تجربيات جهاني نيز نشان مي دهد دانشگاههای پیشرو در اروپا، آمریکای شمالی و آسیا با تدوین استراتژیهای جامع و استفاده از انرژیهای تجدیدپذیر، به موفقیتهای قابل توجهی دستیافتهاند (Shahriari et al., 2020; Liu & Ren, 2020). حتى در كشورهاي درحال توسعه، تمرکز بر أموزش و فرهنگسازی توانسته نتایج مثبتی به همراه داشته باشد (Adnyana & Sudriati 2022; Tshivhase & Bischof, 2023). شاخصهایی

مانند «رتبهبندی سبز دانشگاهی» نیز با بررسی مصرف انرژی، مدیریت زباله و آموزش زیستمحیطی، به ارتقای شفافیت عملکرد کمک کردهاند (et al., 2021; Ni). درنهایت، موفقیت دانشگاههای سبز وابسته به حمایت سیاستگذاران، تخصیص منابع کافی و تعهد جامعه Aboramadan, 2022; Fawehinmi) دانشگاهی است (et al., 2020 یهدف تحقیق حاضر نیز شناسایی و تحلیل شاخصهای کلیدی زیستمحیطی، اجتماعی، اقتصادی و فناورانه است تا چارچوبی نظری و کاربردی برای استقرار پایداری در دانشگاههای یایدار را تسهیل کند.

روششناسي پژوهش

در این پژوهش از روش دلفی فازی برای اولویتبندی شاخصهای تأثیرگذار در ایجاد دانشگاه سبز استفاده شده است. دادهها بر اساس نظرات خبرگان و مرور ادبیات موضوع گردآوری گردید. ابتدا مصاحبه نیمهساختاریافتهای برای شناسایی شاخصهای مؤثر طراحی و در اختیار خبرگان قرار گرفت (جدول ۲). سپس شاخصهای استخراجشده از مطالعات نظری (جدول ۳) با یافتههای مصاحبهها ادغام و در جدول نهایی تنظیم شد (جدول ۴). جامعه آماری تحقیق شامل ۵۰ نفر از متخصصان حوزه دانشگاه سبز، مدیریت محیطزیست و توسعه پایدار بود (جدول ۵). برای اعتبار محتوایی ابزار، نظر استادان و متخصصان اخذ و تأیید شد و برای پایایی نیز از أزمون ألفای کرونباخ استفاده گردید (جدول ۶). نمونهگیری بهصورت هدفمند و غيرتصادفي انجام شد تا افراد با تجربه و تخصص کافی در فرآیند دلفی مشارکت کنند. دادهها با بهرهگیری از تکنیکهای دلفی فازی و ابزارهایی مانند ماتریس مقایسات زوجی و میانگین فازی تحلیل شدند تا رتبهبندی شاخصها بهطور دقیق مشخص شود. روش دلفی با هدف کشف ایدههای قابل اعتماد و ایجاد هماهنگی میان دیدگاههای متخصصان به کار رفت. این نظرسنجیها طی دو مرحله (راند) انجام شد و در پایان، نتایج جمعبندی و تحلیل گردید تا مبنای تصمیم گیری و تدوین برنامه قرار گیرد. بهطور کلی، روش دلفی فازی به عنوان روشی نظاممند و پیمایشی، سه ویژگی اصلی دارد: پاسخهای بینام، تکرار و بازخورد کنترلشده و نهایتاً دستیابی به اجماع گروهی آماری. این ویژگیها، آن را به ابزاری مناسب برای جمع آوری و هماهنگی قضاوتهای آگاهانه متخصصان درباره موضوع دانشگاه سبز تبدیل می کند. جدول ۱. اعداد فازی مثلثی دلفی فازی

Table 1. Fuzzy Delphi Triangular Fuzzy Numbers

عدد فازی مثلثی Triangular fuzzy number	متغیر زبان <i>ی</i> Linguistic variable
(0.0.0/25)	خیلی کم Very little
(0.0/25.0/5)	کم Little
(0/25.0/5.0/75)	متوسط Average
(0/5.0/75.1)	زیاد High
(0/75.1.1)	خیلی زیاد Very High

جدول ۲. شاخصهای منتخب از مصاحبه با متخصصان و استخراج شاخصهای نهایی

Table 2. Selected Indicators from Interviews with Experts and Extraction of Final Indicators

Table 2. Selected Indicators from Interviews with Experts توضيحات	شاخص	ردیف
Description	Index	Row
استفاده از انرژیهای تجدیدپذیر مانند خورشیدی و بادی.	مصرف بهینه انرژی	1
Use of renewable energy sources such as solar and wind power.	Optimal Energy Consumption	1
کاهش مصرف آب از طریق فناوریهای هوشمند و بازیافت آب.	مديريت منابع آب	
Reducing water consumption through smart technologies and water recycling.	Water Resource Management	2
پیادهسازی برنامههای کاهش زباله و بازیافت در دانشگاه.	كاهش توليد زباله	
Implementation of waste reduction and recycling programs at the university.	Waste Reduction	3
استفاده از معماری پایدار برای کاهش مصرف انرژی.	طراحی ساختمانهای سبز	4
Using sustainable architecture to minimize energy consumption.	Green Building Design	-
ایجاد مسیرهای پیادهروی و دوچرخهسواری و استفاده از وسایل نقلیه برقی.	حملونقل پايدار	_
Developing pedestrian and bicycle paths and promoting the use of electric vehicles.	Sustainable Transportation	5
پیادهسازی سیستمهای هوشمند برای مدیریت انرژی و منابع.	استفاده از فناوریهای نوی <i>ن</i>	6
Implementing smart systems for managing energy and resources.	Use of Modern Technologies	
ارائه دورهها و کارگاههای آموزشی درباره پایداری.	آموزش و آگاهی بخشی زیست محیطی	7
Providing courses and workshops on sustainability.	Environmental Education & Awareness	7
تشویق دانشجویان و کارکنان به رفتارها <i>ی</i> سازگار با محیطزیست.	ترویج فرهنگ پایدار <i>ی</i>	
Encouraging students and staff to adopt environmentally responsible behaviors.	Promoting a Culture of Sustainability	8
افزایش مساحت فضای سبز در محیط دانشگاهی.	توسعه فضای سبز	9
Expanding green areas within the university campus.	Green Space Development	
کاهش انتشار کربن با استفاده از فناوریها و رویکردهای نوین.	مدیریت کربن	
Reducing carbon emissions through advanced technologies and	Carbon Management	10
innovative approaches. تدوین سیاستهای جامع برای پایداری در دانشگاه.		
Developing comprehensive policies for sustainability within the	برنامهریزی استراتژیک برای پایداری	11
university.	Strategic Planning for Sustainability	
حمایت از پژوهشهای مرتبط با مسائل زیستمحیطی و پایداری.	تشويق تحقيقات پايدار	12
Supporting research related to environmental and sustainability issues.	Encouraging Sustainable Research	12

توضیحات Possarintion	شاخص العمامية	ردیف
Description	Index	Row
مشارکت در پروژههای جهانی مرتبط با دانشگاههای سبز.	همکاریهای بینالمللی	13
Participating in international projects related to green universities.	International Collaborations	15
برنامهریزی برای دفع مناسب زبالههای شیمیایی و خطرناک.	مديريت پسماند خطرناک	14
Planning for proper disposal of chemical and hazardous waste.	Hazardous Waste Management	17
توسعه مراکز پژوهشی و نواَوری برای فناوریهای پایدار.	ایجاد مراکز نوآوری سبز	
Developing research and innovation centers focused on sustainable	Establishment of Green Innovation	15
technologies.	Centers	
نصب صفحات خورشیدی برای تأمین برق موردنیاز.	استفاده از انرژ <i>ی</i> خورشی <i>دی</i>	16
Installing solar panels to supply required electricity.	Use of Solar Energy	10
استفاده مجدد از منابع و بازیافت مواد برای کاهش اتلاف.	توسعه اقتصاد دایرها <i>ی</i>	17
Reusing resources and recycling materials to reduce resource waste.	Circular Economy Development	1 /
ارزیابی عملکرد دانشگاه در زمینه پایداری با شاخصهای مشخص.	نظارت و ارزیابی مستمر	
Assessing university performance in sustainability with specific	Continuous Monitoring and	18
indicators.	Evaluation	
انتخاب محصولات دوستدار محیطزیست برای تأمین نیازهای دانشگاه.	اصلاح سیاستهای خرید	19
Selecting eco-friendly products to meet university needs.	Procurement Policy Revision	1)
درگیر کردن جوامع محلی در پروژههای سبز دانشگاهی.	جلب مشار کت جامعه	20
Involving local communities in university green initiatives.	Community Engagement	20

جدول ۳. شاخصهای منتخب از مطالعات نظری و مقالات و استخراج شاخصهای نهایی

Table 3. Selected Indicators from Theoretical Studies and Articles and Extraction of Final Indicators

منابع References	توضیحات Description	شاخ <i>ص</i> Indicator	ردیف Row
Roshani et al., 2023; Pouramini & Bashkooh, 2023	استفاده از سیستمهای کارآمد انرژی و منابع تجدیدپذیر. Use of efficient energy systems and renewable energy resources.	مدیریت مصرف انرژی Energy Consumption Management	1
Tajeddini & Nasiri, 2022; Mirfalah Damouchali & Kiamoghadam, 2022	استفاده از فناوریهای نوین در مدیریت منابع و بهینهسازی فرآیندها. Utilization of modern technologies in resource management and process optimization.	استفاده از فناوریهای سبز Use of Green Technologies	2
Bahmaniyari et al., 2020; Vahidi et al., 2020	به کارگیری معماری سبز و ساختمانهای با مصرف انرژی پایین. Application of green architecture and low- energy-consuming buildings.	طراحی ساختمانهای سبز Green Building Design	3
Raad & Jabari, 2021; Behzadpour & Khakzand, 2021	کاهش انتشار دی اکسید کربن و سایر آلایندهها از طریق بهینهسازی فرآیندها. Reduction of CO ₂ and other emissions through process optimization.	کاهش گازهای گلخانهای Greenhouse Gas Reduction	4
Moghimi et al, 2023; Ghoran Orimi et al., 2022	کاهش مصرف آب و استفاده از سیستمهای بازیافت و تصفیه آب. Reducing water consumption and utilizing recycling and purification systems.	مدیریت منابع اَب Water Resource Management	5
Esmaeili et al., 2022; Yadegari Dehdakordi & Nilashi, 2022	کاهش و بازیافت زبالهها و پسماندها در دانشگاه. Reducing and recycling waste within the university campus.	مدیریت پسماند Waste Management	6
Atici et al., 2021; Wu, 2021	گنجاندن آموزشهای پایداری در برنامههای درسی و کارگاههای آموزشی. Including sustainability education in academic curricula and workshops.	فرهنگسازی و اَموزش زیستمحیطی Environmental Education and Awareness	7
Kyrychenko et al., 2021; Ali & Anufriev, 2020	ترویج حملونقل عمومی و استفاده از وسایل نقلیه برقی و	حملونقل پایدار Sustainable Transportation	8

منابع References	توضیحات Description	شاخ <i>ص</i> Indicator	ردیف Row
	کم مصرف. Promoting public transportation and the use of electric and low-emission vehicles.		
Anthony., 2021; Shahriari et al., 2020	تدوین سیاستها و برنامههای جامع برای پایداری در دانشگاه. Developing comprehensive sustainability policies and plans for universities.	برنامهریزی استراتژیک برای پایداری Strategic Planning for Sustainability	9
Liu & Ren, 2020; Qazi et al., 2020	ایجاد و نگهداری فضاهای سبز در محیط دانشگاه برای بهبود کیفیت هوا و محیط. Creating and maintaining green spaces on campus to enhance air quality and environmental conditions.	توسعه فضای سبز Green Space Development	10
Gholami et al., 2020; Adnyana & Sudriati, 2022	نصب پنلهای خورشیدی و توربینهای بادی برای تأمین انرژی دانشگاه. Installing solar panels and wind turbines to supply energy for the university.	استفاده از انرژی تجدیدپذیر Use of Renewable Energy	11
Köhler & Kaiser, 2021; Tshivhase & Bischof, 2023	حمایت از پروژههای تحقیقاتی در حوزه پایداری و محیطزیست. Supporting research projects focused on sustainability and the environment.	تشویق به پژوهشهای سبز Encouraging Green Research	12
Aboramadan, 2022; Ni et al., 2022	استفاده از سیستم های هوشمند برای بهینه سازی استفاده از منابع. Using smart systems to optimize the utilization of resources.	ایجاد سیستمهای مدیریت هوشمند Smart Management Systems	13
Fawehinmi et al., 2020; Liu & Ren, 2020	استفاده از منابع محلی و کاهش وابستگی به منابع خارجی برای کاهش هزینهها. Using local resources to reduce dependency on external sources and lower costs.	استفاده از منابع محلی Use of Local Resources	14
Shahriari et al., 2020; Vahidi et al., 2020	نظارت بر عملکرد پایداری دانشگاهها از طریق شاخصهای کمی و کیفی. Monitoring university sustainability performance through quantitative and qualitative indicators.	نظارت و ارزیابی مستمر Continuous Monitoring and Evaluation	15
Köhler & Kaiser, 2021; Aboramadan, 2022	مشارکت در پروژههای بین المللی در زمینههای محیطزیستی و سبز. Engaging in international projects related to environmental and green initiatives.	ترویج همکاریهای بینالمللی Promotion of International Cooperation	16
Tshivhase & Bischof, 2023; Ghoran Orimi et al., 2022	حذف یا کاهش استفاده از مواد شیمیایی خطرناک و مدیریت بهتر پسماندها. Eliminating or reducing the use of hazardous chemicals and improving waste management.	مدیریت کارآمد پسماندهای شیمیایی Efficient Chemical Waste Management	17
Pouramini & Bashkooh, 2023; Qazi et al., 2020	خرید محصولات و خدمات با توجه به معیارهای سبز و پایداری. Purchasing products and services based on green and sustainability standards.	اصلاح سیاستهای خرید Sustainable Procurement Policies	18
Gholami et al., 2020; Yadegari Dehdakordi & Nilashi, 2022	استفاده مجدد از مواد و منابع برای کاهش اتلاف و بهبود بهرهوری. Reusing materials and resources to reduce waste and improve efficiency.	توسعه اقتصاد دایرهای Development of the Circular Economy	19

منابع	توضیحات	شاخ <i>ص</i>	ردیف
References	Description	Indicator	Row
Moghimi et al., 2024; Raad & Jabari, 2021	افزایش مشارکت دانشجویان و جامعه دانشگاهی در برنامههای سبز. Enhancing student and academic community participation in green programs.	جلب مشارکت جامعه Community Engagement	20

جدول ٤. شاخصهای نهایی حاصل از نظر خبرگان و مطالعات نظری

Table 4. Final Indicators from Expert Opinions and Theoretical Studies

منابع	توضيحات	شاخص	ردیف
References	Description	Indicator	Row
Roshani et al., 2023; Pouramini & Bashkooh, 2023	استفاده از سیستمهای کارآمد انرژی و منابع تجدیدپذیر Use of efficient energy systems and renewable resources.	مدیریت مصرف انرژی Energy Consumption Management	1
Moghimi & Hashemnejad, 2024; Ghoran Orimi et al., 2022	استفاده از فناوریهای نوین در مدیریت منابع و بهینهسازی فرآیندها Use of modern technologies in resource management and process optimization.	استفاده از فناوریهای سبز Use of Green Technologies	2
Esmaeili et al., 2022; Yadegari Dehdakordi & Nilashi, 2022	به کارگیری معماری سبز و ساختمانهای با مصرف انرژی پایین Application of green architecture and low- energy buildings.	طراحی ساختمانهای سبز Green Building Design	3
Bahmaniyari et al., 2020; Vahidi et al., 2020	کاهش انتشار دی اکسید کربن و سایر آلایندهها از طریق بهینهسازی فرآیندها Reducing CO2 and other emissions through process optimization.	کاهش گازهای گلخانهای Greenhouse Gas Reduction	4
Kyrychenko et al., 2021; Ali & Anufriev, 2020	کاهش مصرف آب و استفاده از سیستمهای بازیافت و تصفیه آب Reducing water consumption and utilizing recycling and purification systems.	مدیریت منابع آب Water Resource Management	5
Tajeddini & Nasiri, 2022; Mirfalah Damouchali & Kiamoghadam, 2020	کاهش و بازیافت زبالهها و پسماندها در دانشگاه Reducing and recycling waste within the university	مديريت پسماند Waste Management	6
Atici et al., 2021; Wu, 2021	گنجاندن آموزشهای پایداری در برنامههای درسی و کارگاههای آموزشی Inclusion of sustainability education in academic curricula and workshops. ترویج حملونقل عمومی و استفاده از وسایل نقلیه برقی و	فرهنگسازی و اَموزش زیستمحیطی Environmental Education and Awareness	7
Expert Interview	کرویج حملوس عمومی و استفاده از وساین نظیم برخی و کممصرف کممصرف Promoting public transportation and the use of electric and low-consumption vehicles.	حملونقل پایدار Sustainable Transportation	8
Liu & Ren, 2020; Qazi et al., 2020	تدوین سیاستها و برنامههای جامع برای پایداری در دانشگاه Developing policies and comprehensive plans for sustainability in universities. ایجاد و نگهداری فضاهای سبز در محیط دانشگاه برای بهبود	برنامەریزی استراتژیک برای پایداری Strategic Planning for Sustainability	9
Rad, M., & Jabbari, 2021; Behzadpour & Khakzand, 2021	کیفیت هوا و محیط کیفیت هوا و محیط Creating and maintaining green areas on campus to improve air and environmental quality.	توسعه فضای سبز Green Space Development	10

منابع	توضيحات	شاخص	ردیف
References	Description	Indicator	Row
Anthony., 2021; Shahriari et al., 2020	نصب پنلهای خورشیدی و توربینهای بادی برای تأمین انرژی دانشگاه Installing solar panels and wind turbines to supply energy for the university.	استفاده از انرژی تجدیدپذیر Use of Renewable Energy	11
Köhler & Kaiser, 2021; Tshivhase & Bischof, 2023	حمایت از پروژههای تحقیقاتی در حوزه پایداری و محیطزیست Supporting research projects in the field of sustainability and the environment.	تشویق به پژوهشهای سبز Encouraging Green Research	12
Köhler & Kaiser, 2021; Aboramadan, 2022	استفاده از سیستمهای هوشمند برای بهینهسازی استفاده از منابع Using smart systems to optimize resource use. استفاده از منابع محلی و کاهش وابستگی به منابع خارجی	ایجاد سیستههای مدیریت هوشمند Establishment of Smart Management Systems	13
Tshivhase & Bischof, 2023; Ghoran Orimi et al., 2022	برای کاهش هزینهها Using local resources and reducing dependence on external sources to reduce costs.	استفاده از منابع محلی Use of Local Resources	14
Expert Interview	نظارت بر عملکرد پایداری دانشگاهها از طریق شاخصهای کمی و کیفی Monitoring universities' sustainability performance through quantitative and qualitative indicators.	نظارت و ارزیابی مستمر Continuous Monitoring and Evaluation	15
Gholami et al., 2020; Adnyana & Sudriati, 2022	مشارکت در پروژههای بینالمللی در زمینههای محیطزیستی و سبز Participating in international environmental and green projects.	ترویج همکاریهای بینالمللی Promotion of International Cooperation	16
Gholami et al., 2020; Yadegari Dehdakordi & Nilashi, 2022	حذف یا کاهش استفاده از مواد شیمیایی خطرناک و مدیریت بهتر پسماندها Eliminating or reducing the use of hazardous chemicals and improving waste management.	مدیریت کاراًمد پسماندهای شیمیایی Efficient Management of Chemical Waste	17
Shahriari et al., 2020; Vahidi et al., 2020	خرید محصولات و خدمات با توجه به معیارهای سبز و پایداری Purchasing products and services according to green and sustainable criteria.	اصلاح سیاستهای خرید Procurement Policy Reform	18
Pouramini & Bashkooh, 2023; Ghazi et al., 2020	استفاده مجدد از مواد و منابع برای کاهش اتلاف و بهبود بهرهوری. Reusing of materials and resources to reduce waste and improve efficiency.	توسعه اقتصاد دایرهای / Development of Circular Economy	19
Moghimi et al., 2023; Rad, M., & Jabbari, 2021	افزایش مشارکت دانشجویان و جامعه دانشگاهی در برنامههای سبز. Enhancing student and university community participation in green programs.	جلب مشار کت جامعه Community Engagement	20

جدول ۴ به مجموعهای از شاخصهای کلیدی در زمینه مدیریت منابع آب، کاهش تولید زباله، طراحی ساختمانهای

دانشگاههای سبز اشاره دارد که شامل مصرف بهینه انرژی، سبز و حملونقل پایدار می شود.

جدول ٥. تركيب اعضاء خبره **Table 5.** Composition of Expert Members

درصد فراوان <i>ی</i> Percentage	تعداد افراد Frequency	گروههای مختلف Categories	ویژ <i>گی</i> Characteristic
30%	15	سال ۴۰–۳۰ 30–40 years	سن
40%	20	سال ۴۱–۵۰	Age

درصد فراواني	تعداد افراد	گروههای مختلف	ویژگی
Percentage	Frequency	Categories	Characteristic
		41–50 years	
20%	10	سال ۵۱–۶۰	
		51–60 years	
10%	5	بالای ۶۰ سال	
		Over 60 years	
50%	25	کارشناسی ارشد	
		Master's degree	تحصيلات
50%	25	دکتری	Education
3070	23	Ph.D	
60%	30	مرد	
0070	30	Male	جنسيت
4007	20	زن	Gender
40%	20	Female	
		استاد دانشگاه	
30%	15	University Professor	
		مشاور یا کارشناس محیطزیست	
20%	10	Environmental Consultant/Expert	موقعیت شغلی
• • • • • • • • • • • • • • • • • • • •	10	مدیر یا مسئول پروژههای سبز	Job Position
20%		Green Project Manager	
200/	1.5	ی پژوهشگر یا محقق	
30%	15	Researcher	
200/		سال ۱۰-۵	
30%	15	5–10 years	
		سال ۲۱–۲۰ سال ۱۱	تجربه کاری
40%	20	11–20 years	Work Experience
2007	1.5	بیش از ۲۰ سال بیش از ۲۰ سال	•
30%	15	More than 20 years	
700/	25	دانشگاه دولتی	
70%	35	Public University	نوع دانشگاه
30%	15	۔ دانشگاہ خصوصی	Type of University
3070	13	Private University	
40%	20	بیشتر از ۵ مقاله یا پروژه تحقیقاتی	
1 U70	∠∪	More than 5 papers/projects	
50%	25	۱تا ۵ مقاله یا پروژه تحقیقاتی	سابقه تحقيقاتي
JU/0	23	1 to 5 papers/projects	Research Background
10%	5	کمتر از ۱ مقاله یا پروژه تحقیقاتی	
10/0	J	Less than 1 paper/project	

جدول ٦. اعتبار پرسشنامه **Table 6.** Questionnaire Validity

شاخص اَلفای کرونباخ	تعداد سؤالات
Cronbach's alpha index	Number of questions
0.898	20

از جمع آوری نظرات گروهی از خبرگان در زمینه پایداری و مدیریت محیطزیست استفاده می شود.

يافتههاى پژوهش

برای شروع پژوهش با استفاده از روش دلفی فازی در اولویت بندی شاخصهای تأثیرگذار در ایجاد دانشگاه سبز، ابتدا

جدول ۷. دور اول نتایج پرسشنامه دلفی شاخصهای دانشگاه سبز

Table 7. First Round of Results of the Delphi Questionnaire on Green University Indicators

<u>1 a</u> تأييد.	ible 7. First تعداد	Round of Results	of the D	elphi Qi	uestion	naire on	Green U	niversit	y Indicators	
عدم تأیید عدم تأیید Approval. disapprov al	خبرگان Number of experts	فازی زدایی Defuzzification	_	ىيانگىن كا tal avera			میانگی <i>ن</i> L, M ,U		شاخ <i>ص</i> Index	ردیف Row
≥ 0.7	50	امتیاز نهای <i>ی</i> Final score	U	M	L	U	M	L		
تأييد Approved	50	0.76	0.97	0.79	0.53	11.60	9.50	6.40	مصرف بهینه انرژی Optimal Energy Consumption	1
عدم تأیید Not Approved	50	0.66	0.87	0.68	0.43	10.40	8.10	5.20	مدیریت منابع اَب Water Resource Management	2
تأييد Approved	50	0.78	0.98	0.81	0.56	11.80	9.70	6.70	کاهش تولید زباله Waste Reduction طراحی	3
تأييد Approved	50	0.87	1.00	0.95	0.67	12.00	11.40	8.00	ساختمانهای سبز Green Building Design	4
تأييد Approved	50	0.76	0.95	0.80	0.53	11.40	9.60	6.30	حملونقل پایدار Sustainable Transportatio n	5
عدمتأیید Not Approved	50	0.66	0.89	0.68	0.41	10.70	8.10	4.90	استفاده از فناوریهای نوین Use of Modern Technologies	6
تأييد Approved	50	0.77	0.95	0.83	0.54	11.40	9.90	6.50	آموزش و آگاهی بخشی زیست محیطی Environment al Education and Awareness ترویج فرهنگ	7
تأييد Approved	50	0.89	1.00	0.98	0.68	12.00	11.70	8.20	پایداری Promoting a Culture of Sustainability	8
تأييد Approved	50	0.84	0.98	0.91	0.63	11.80	10.90	7.50	توسعه فضای سبز Green Space Development	9
تأييد Approved	50	0.86	1.00	0.93	0.65	12.00	11.10	7.80	مدیریت کربن Carbon Management	10

تأييد. عدم تأييد Approval. disapprov al	تعداد خبرگان Number of experts	فازی زدایی Defuzzification	میانگین کل Total average				میانگین L, M ,U		شاخ <i>ص</i> Index	ردیف Row
≥ 0.7	50	امتیاز نهایی Final score	U	M	L	U	M	L		
تأييد Approved	50	0.74	0.95	0.78	0.51	11.40	9.30	6.10	برنامهریزی استراتژیک برای پایداری Strategic Planning for Sustainability تشویق تحقیقات	11
تأييد Approved	50	0.76	0.95	0.80	0.53	11.40	9.60	6.30	پایدار Encouraging Sustainable Research همکاریهای	12
تأييد Approved	50	0.72	0.91	0.77	0.48	10.90	9.20	5.80	بین لمللی International Collaboration مدیریت پسماند	13
عدمتأیید Not Approved	50	0.61	0.83	0.65	0.36	10.00	7.80	4.30	خطرناک Hazardous Waste Management ایجاد مراکز	14
عدمتأیید Not Approved	50	0.55	0.81	0.56	0.29	9.70	6.70	3.50	نوآوری سبز Establishmen t of Green Innovation Centers استفاده از انرژی	15
تأييد Approved	50	0.73	0.93	0.76	0.49	11.10	9.10	5.90	خورشیدی Use of Solar Energy توسعه اقتصاد دایرهای	16
عدمتأييد Not Approved	50	0.53	0.74	0.55	0.29	8.90	6.60	3.50	Development of the Circular Economy نظارت و ارزیابی	17
عدمتأیید Not Approved عدمتأیید	50	0.67	0.87	0.71	0.43	10.40	8.50	5.10	Continuous Monitoring and Evaluation اصلاح	18
Not Approved	50	0.65	0.85	0.69	0.40	10.20	8.30	4.80	سیاستهای خرید Procurement Policy Reform	19

تأييد. عدم تأييد Approval. disapprov al	تعداد خبرگان Number of experts	فازی زدایی Defuzzification		یانگین کا tal avera			میانگین L, M ,U		شاخ <i>ص</i> Index	ردیف Row
≥ 0.7	50	امتیاز نهای <i>ی</i> Final score	U	M	L	U	M	L		
عدمتأیید Not Approved	50	0.66	0.90	0.68	0.40	10.80	8.10	4.80	جلب مشارکت جامعه Community Engagement	20

در دور اول پرسشنامه دلفی برای شناسایی شاخصهای ۲۰ شاخص بررسیشده، ۱۲ شاخص تأییدشده و ۸ شاخص

تأثیرگذار در ایجاد دانشگاه سبز، شاخصهای مختلف ازنظر دیگر از تأیید نهایی برخوردار نبودند. میانگین (L, M, U) و فازی زدایی ارزیابی شدند. از مجموع

جدول ۸. دور دوم نتایج پرسشنامه دلفی شاخصهای دانشگاه سبز

Table 8. Second Round of Results of the Delphi Questionnaire on Green University Indicators

تأييد/	تعداد	xound of ixesuits ('	crafty maleators	
عدم تأیید /Approval disapproval	خبرگان Number of experts	فازی زدایی Defuzzification		یانگین ک al avera		(میانگین (L,M,U)		شاخ <i>ص</i> Index	ردیف Row
≥ 0.7	50	امتیاز نهای <i>ی</i> Final score	U	M	L	U	M	L	•	
تأييد Approved	50	0.83	1.00	0.88	0.62	12.00	10.50	7.40	مصرف بهینه انرژی Optimal Energy Consumption	1
تأييد Approved	50	0.83	1.00	0.88	0.62	12.00	10.50	7.40	مدیریت منابع اَب Water Resource Management	2
تأييد Approved	50	0.82	1.00	0.85	0.60	12.00	10.20	7.20	کاهش تولید زباله Waste Reduction طراحی	3
تأييد Approved	50	0.87	1.00	0.95	0.67	12.00	11.40	8.00	ساختمانهای سبز Green Building Design	4
تأييد Approved	50	0.86	1.00	0.93	0.65	12.00	11.10	7.80	حملونقل پایدار Sustainable Transportation استفاده از	5
تأييد Approved	50	0.83	1.00	0.88	0.62	12.00	10.50	7.40	فناوریهای نوین Use of Modern Technologies	6
تأييد Approved	50	0.87	1.00	0.95	0.67	12.00	11.40	8.00	آموزش و آگاهیبخشی زیستمحیطی Environmental Education and	7

تأييد/ عدم تأييد	تعداد خبرگان	فازی زدایی Defuzzification		یانگین ک al avera			میانگین (L,M,U)		شاخص	T (
Approval/ disapproval	Number of experts		100	ai avei	age		(L,WI,U)		Index	ردیف Row
≥ 0.7	50	امتیاز نهایی Final score	U	M	L	U	M	L		
									Awareness ترویج فرهنگ	
تأييد Approved	50	0.89	1.00	0.98	0.68	12.00	11.70	8.20	پایداری Promoting a Culture of Sustainability	8
تأييد Approved	50	0.87	1.00	0.95	0.67	12.00	11.40	8.00	توسعه فضا <i>ی</i> سبز Green Space Development	9
تأييد Approved	50	0.86	1.00	0.93	0.65	12.00	11.10	7.80	مدیریت کربن Carbon Management برنامهریزی	10
تأييد Approved	50	0.84	1.00	0.90	0.63	12.00	10.80	7.60	استراتژیک برای پایداری Strategic Planning for Sustainability	11
تأييد Approved	50	0.86	1.00	0.93	0.65	12.00	11.10	7.80	تشویق تحقیقات پایدار Encouraging Sustainable Research همکاریهای	12
تأييد Approved	50	0.86	1.00	0.93	0.65	12.00	11.10	7.80	بین المللی International Collaboration مدیریت پسماند	13
تأييد Approved	50	0.86	1.00	0.93	0.65	12.00	11.10	7.80	خطرناک Hazardous Waste Management ایجاد مراکز نوآوری	14
تأييد Approved	50	0.80	1.00	0.83	0.58	12.00	9.90	7.00	سبز Establishment of Green Innovation Centers استفاده از انرژی	15
تأييد Approved	50	0.83	1.00	0.88	0.62	12.00	10.50	7.40	خورشید <i>ی</i> Use of Solar Energy توسعه اقتصاد	16
تأييد Approved	50	0.82	1.00	0.85	0.60	12.00	10.20	7.20	دایرهای Development of the Circular Economy	17
تأييد Approved	50	0.84	1.00	0.90	0.63	12.00	10.80	7.60	نظارت و ارزیابی مستمر	18

تأييد/ عدم تأييد Approval/ disapproval	تعداد خبرگان Number of experts	فازی زدای <i>ی</i> Defuzzification		یانگین ک al aver:			میانگین (L,M,U)		شاخ <i>ص</i> Index	ردیف Row
≥ 0.7	50	امتیاز نهای <i>ی</i> Final score	U	M	L	U	M	L		
									Continuous Monitoring and Evaluation اصلاح سیاستهای	
تأييد Approved	50	0.86	1.00	0.93	0.65	12.00	11.10	7.80	خرید Procurement Policy Reform جلب مشارکت	19
تأييد Approve	50	0.86	1.00	0.93	0.65	12.00	11.10	7.80	جامعه Community Engagement	20

در دور دوم پرسشنامه دلفی برای شناسایی شاخصهای ورارگرفته و تمامی شاخصها با امتیاز فازی زدایی بالای ۰/۷ تأييد شدند.

تأثیر گذار در ایجاد دانشگاه سبز، نتایج بهطور کلی مثبتتر از دور اول بودند. در این مرحله، تمامی ۲۰ شاخص مورد ارزیابی

جدول ۹. رتبهبندی شاخصهای مؤثر در ایجاد دانشگاه سبز

Table 9. Ranking of Effective Indicators in Creating a Green University

رتبه	وزن نهای <i>ی</i>	فازی زدایی	شاخص	ردیف
Rank	Final weight	Defuzzification	Indicator	Row
1	0.0534	0.89	ترویج فرهنگ پایداری Promoting a Culture of Sustainability	1
2	0.0522	0.87	طراحی ساختمانهای سبز Green Building Design	2
2	0.0522	0.87	اَموزش و اَگاهیبخشی زیستمحیطی Environmental Education and Awareness	3
2	0.0522	0.87	توسعه فضای سبز Green Space Development	4
3	0.0516	0.86	حملونقل پایدار Sustainable Transportation	5
3	0.0516	0.86	مدیریت کربن Carbon Management	6
3	0.0516	0.86	تشویق تحقیقات پایدار Encouraging Sustainable Research	7
3	0.0516	0.86	همکاریهای بینالمللی International Collaboration	8
3	0.0516	0.86	مدیریت پسماند خطرناک Hazardous Waste Management	9
3	0.0516	0.86	اصلاح سیاستهای خرید Procurement Policy Reform	10
3	0.0516	0.86	جلب مشار کت جامعه Community Engagement	11
4	0.0504	0.84	برنامەریزی استراتژیک برای پایداری Strategic Planning for Sustainability	12
4	0.0504	0.84	نظارت و ارزیابی مستمر	13

رتبه	وزن نهایی	فازی زدایی	شاخص	ردیف
Rank	Final weight	Defuzzification	Indicator	Row
			Continuous Monitoring and Evaluation	
5	0.0498	0.83	مصرف بهینه انرژ <i>ی</i> Optimal Energy Consumption	14
5	0.0498	0.83	مدیریت منابع آب Water Resource Management	15
5	0.0498	0.83	استفاده از فناوریهای نوین Use of Modern Technologies	16
5	0.0498	0.83	استفاده از انرژی خورشیدی Use of Solar Energy	17
6	0.0492	0.82	کاهش تولید زباله Waste Reduction	18
6	0.0492	0.82	توسعه اقتصاد دایرهای Development of the Circular Economy	19
7	0.0480	0.80	ایجاد مراکز نوآوری سبز Establishment of Green Innovation Centers	20

در جدول رتبهبندی شاخصهای مؤثر در ایجاد دانشگاه سبز، شاخص «ترویج فرهنگ پایداری» با فازی زدایی ۰/۸۹ و وزن نهایی ۰/۵۳۴ بالاترین رتبه را کسب کرده است. این شاخص بهعنوان مهمترین عامل در جهت ایجاد دانشگاه سبز شناخته شده و در اولویت قرار دارد. پسازآن، شاخصهایی چون «طراحی ساختمانهای سبز»، «آموزش و آگاهی بخشی زیستمحیطی» و «توسعه فضای سبز» با فازی زدایی ۰/۸۷ و وزن نهایی مشابه، بهطور مشترک در رتبه دوم قرار دارند. همچنین، شاخصهایی مانند «حملونقل پایدار»، «مدیریت کربن»، «تشویق تحقیقات پایدار» و «همکاریهای بین المللی»، مدیریت پسماند خطرناک، اصلاح سیاستهای خرید و جلب مشارکت خرید نیز در رتبه بعدی با وزن نهایی مشابه ۰/۵۱۶ قرار دارند. درحالی که شاخص «ایجاد مراکز نوآوری سبز» با فازی زدایی ۰/۸۰ و وزن نهایی ۰/۰۴۸۰ در رتبه بیستم قرارگرفته است. این رتبهبندی نشان میدهد که شاخصهای فرهنگی و زیستمحیطی در اولویت بالاتری نسبت به شاخصهای فناورانه و اقتصادی قرار دارند.

بحث و نتیجه گیری

پژوهش حاضر با بهرهگیری از روش دلفی فازی، شاخصهای کلیدی ایجاد دانشگاه سبز را شناسایی و اولویتبندی کرده و نشان داده است که تحقق این هدف نیازمند توجه همزمان به ابعاد زیستمحیطی، اجتماعی و اقتصادی است. در دور دوم اجرای دلفی، اجماع خبرگان افزایش یافت و تمامی شاخصهای پیشنهادی با امتیاز فازیزدایی بالاتر از ۱/۷ تأیید شدند. در

رتبهبندی نهایی، «ترویج فرهنگ پایداری» با بالاترین امتیاز (٠/٨٩) اهمیت آموزش و نهادینهسازی رفتارهای پایدار را برجسته کرد. پسازآن، شاخصهایی چون «طراحی ساختمانهای سبز»، «آموزش زیستمحیطی» و «توسعه فضای سبز» در مراتب بعدی قرار گرفتند. همچنین شاخصهایی نظیر «حملونقل پایدار»، «مدیریت کربن»، «تحقیقات پایدار» و «همکاریهای بینالمللی» با امتیازهای نزدیک به هم (۰/۸۶)، نشاندهنده لزوم بهرهگیری از فناوریهای نوین و تعاملات جهانی بودند. افزون بر این، «مدیریت پسماند خطرناک» و «اصلاح سیاستهای خرید» نیز جایگاه بالایی داشتند که بر ضرورت سیاستگذاری مؤثر برای كاهش اثرات زيستمحيطي تأكيد دارد. بهطوركلي، يافتهها نشان میدهد دانشگاه سبز صرفاً با اقدامات پراکنده محقق نمی شود، بلکه نیازمند برنامهریزی جامع، فرهنگ سازی، طراحی پایدار، سیاست گذاری مناسب و همکاری علمی است. این نتایج می تواند راهنمایی عملی برای مدیران و سیاست گذاران در توسعه پایدار آموزش عالی باشد. مقایسه با پژوهشهای پیشین نشان می دهد نتایج حاضر با مطالعاتی نظیر ابورامدان (۲۰۲۲) درباره نقش فرهنگ سبز و آگاهی بخشی، غلامی و همکاران (۲۰۲۰) درباره فناوریهای نوین، علی و آنافریف (۲۰۲۰) و آتیکی و همکاران (۲۰۲۱) درباره طراحی ساختمانهای سبز و کهلر و کایزر (۲۰۲۱) درباره سقفهای سبز همخوانی دارد. همچنین، نتایج مشابهی با پژوهش روشنی و همکاران (۱۴۰۲) در شناسایی شاخصهایی چون مصرف بهینه انرژی، مدیریت منابع أب و كاهش زباله بهدست آمده است. علاوه بر اين،

سپاسگزاری

درنهایت از تمامی دوستان و اساتیدی که ما را در نگارش این مقاله یاری رساندهاند کمال تشکر را داریم.

References

- Aboramadan, M. (2022). "The effect of green HRM on employee green behaviors in higher education: the mediating mechanism of green work engagement". *International Journal of Organizational Analysis*, 30(1), 7-23. https://doi.org.10.1108.IJOA-05-2020-2190
- Adnyana, I. M. D. M., & Sudaryati, N. L. G. (2022). "The potency of green education-based blended learning in biology students at the Hindu University of Indonesia". BIO-INOVED: Journal Biologi-Inovasi Pendidikan, 4(1), 1-9. https://ppjp.ulm.ac.id.journal.index.php.bin
- Ali, E. B., & Anufriev, V. P. (2020). "Towards environmental sustainability in Russia: evidence from green universities". *Heliyon*, 6(8). https://doi.org/10.1016/j.heliyon.2020.e04719
- Anthony Jnr, B. (2021). "Green campus paradigms for sustainability attainment in higher education institutions—a comparative study". *Journal of Science and Technology Policy Management*, 12(1), 117-148. https://doi.org/10.1108/JSTPM-02-2019-0008
- Atici, K. B., Yasayacak, G., Yildiz, Y., & Ulucan, A. (2021). "Green University and academic performance: An empirical study on UI GreenMetric and World University Rankings". Journal of Cleaner Production, 291, 125289. https://doi.org/10.1016/j.jclepro.2020.125289
- Bahmanyari, A., Amiri, A., Aflatoon, S., Nikpour, A., & Mohammad Bagheri, M. (2020). "Designing and explaining the green human resource management model emphasizing social responsibility at Shiraz

یافتههای تشیوههازه و بیسچاف (۲۰۲۳) درباره اهمیت همکاریهای بینالمللی نیز با تأکید این تحقیق همراستاست. درمجموع، همگرایی نتایج با مطالعات داخلی و خارجی، اهمیت طراحی و پیادهسازی استراتژیهای جامع برای پایداری دانشگاهها را تأیید می کند.

- University of Medical Sciences". *Sadra Medical Sciences Journal*, 8(4), 397–418. [In persian] https://doi.org/10.30476/smsj.2020.85432.
- Behzadpour, S., & Khakzand, M. (2021). "Achieving green architecture through the application of BIM (Case study: Faculty of Architecture, Urban Planning, Civil Engineering, and Mechanics at Iran University of Science and Technology)". Haft Hesar Environmental Studies, 35(10), 115–132. [In persian] http://hafthesar.iauh.ac.ir/article-1-1298-en.html
- Esmaili, H., Salehi, L., Manouri Fard, M., & Feizollah, M. (2022). "Green management at Razi University: What are the drivers?", *Journal of Environmental Education and Sustainable Development*, 11(1), 21–43. [In persian] https://doi.org/10.30473/ee.2022.60534.24
- Fawehinmi, O., Yusliza, M. Y., Mohamad, Z., Noor Faezah, J., & Muhammad, Z. (2020). "Assessing the green behaviour of academics: The role of green human resource management and environmental knowledge". *International Journal of Manpower*, 41(7), 879-900. https://doi.org/10.1108/IJM-07-2019-0347
- Gholami, H., Bachok, M. F., Saman, M. Z. M., Streimikiene, D., Sharif, S., & Zakuan, N. (2020). "An ISM approach for the barrier analysis in implementing green campus operations: Towards higher education sustainability". *Sustainability*, 12(1), 363. https://doi.org/10.3390/su12010363
- Ghoran Orimi, K., Ghiasi, M., & Tahmasebi Limouni, S. (2022). Examining the status of green user interfaces on Iranian digital library websites. *Journal of Knowledge*

- Retrieval and Semantic Systems, 9(33), 95-133. [In persian] https://doi.org/10.22054/jks.2022.68693.15
- Köhler, M., & Kaiser, D. (2021). "Green roof enhancement on buildings of the university of applied sciences in Neubrandenburg (Germany) in times of climate change". *Atmosphere*, 12(3), 382. https://doi.org/10.3390/atmos12030382
- Kyrychenko, K., Laznenko, D., & Reshetniak, Ya. (2021). "Green University as an Element of Forming a Sustainable Public Health System". *Health Economics and Management Review*, 2(4), 21-26. https://doi.org/10.21272.hem.2021.4-02
- Liu, Q., & Ren, J. (2020). Research on the building energy efficiency design strategy of Chinese universities based on green performance analysis. Energy and Buildings, 224, 110242. https://doi.org/10.1016/j.enbuild.2020.110
- Mirfalah Damouchali, R., & Kiyamoghadam, M. (2022). "Integration and performance improvement of green supply chain management using green human resource management with a fuzzy approach at Guilan University of Medical Sciences". International Conference on Management and Industry, 3(3), 177–192. [In persian] https://doi.org/10.22054/jims.2020.47116.2389
- Moghimi, S., Taghavi, R., & Hashem Nejad Abrasi, M. (2024). "Sustainable education development in universities with a green entrepreneurial orientation: A health-centered solution". *Clinical Excellence*, 14(3), 44–54. [In persian] https://www.magiran.com/p2703193
- Nie, L., Gong, H., Zhao, D., Lai, X., & Chang, M. (2022)."Heterogeneous knowledge spillover channels universities and green technology innovation in local firms: Stimulating quantity quality?". **Frontiers** or Psychology, 13. https://doi.org/10.3389/fpsyg.2022.943655
- Pouramini, Z., & Bashkouh, M. (2023). Modeling green university components for higher education (Case study: Mohaghegh Ardabili University). *Journal of Natural*

- Environment, 76 (4), 715-729. [In persian] https://doi.org/10.22059/jne.2023.358668. 2550
- Qazi, W., Qureshi, J. A., Raza, S. A., Khan, K. A., & Qureshi, M. A. (2020). "Impact of personality traits and university green entrepreneurial support on students' green entrepreneurial intentions: the moderating role of environmental values". *Journal of Applied Research in Higher Education*, 13(4), 1154-1180. https://doi.org/10.1108/JARHE-05-2020-0130
- Rad, M., & Jabbari Gilandeh, R. (2022). "Investigating possible approaches to achieving green university goals at Farhangian University". *Environmental Science and Technology*, 23(12), 169–186. [In persian] https://doi.org/10.30473/ee.2020.6563
- Roshani, K., Khosravipour, H., Yazdanpanah, M., Masoud, Z., Zobeidi, M., & Tajari Moghadam, M. (2023). "Identification and development of sustainable green university indicators using the Delphi method". *Geographical Research*, 38(3), 423–434. [In persian] https://doi.org/10.30473/ee.2023.66176.2581
- Shahriari, B., Hassanpoor, A., Navehebrahim, A., & Jafar, S. (2020). "Designing a green human resource management model at university environments: case of universities in Tehran". *Evergreen*, 7(3), 336-350. [In persian] https://doi.org/10.5109/4068612
- Tajedini, O. and Nasiri, Z. (2022). "Examining the Readiness to Realize Green Libraries in Iranian Universities in line with Sustainable Management". *Academic Librarianship and Information Research*, 56(3), 45-62. [In persian] https://doi.org/10.22059.jlib.2022.349457. 1647.
- Tshivhase, L., & Bisschoff, C. (2023). "Designing a model to measure and manage the implementation of green initiatives at South African universities". *Environmental Economics*, 14(1), 1. https://doi.org/10.21511/ee.14(1).2023.01
- Vahidi, Q., Ghovam, S., & Abbas, R. (2020). "Examining challenges and strategies for

waste management development in universities with a green management approach". *Environmental Science Studies*, 5(2), 2437–2447. [In persian] https://doi.org/10.2478/eces-2021-0007

Wu, C. H. (2021). "An empirical study on discussion and evaluation of green university". *Ecological Chemistry and Engineering*, 28(1), 75-85. https://doi.org/10.2478/eccs-2021-0007

Yadegaridehkordi, E., & Nilashi, M. (2022). "Moving towards green university: a method of analysis based on multi-criteria decision-making approach to assess sustainability indicators". *International Journal of Environmental Science and Technology*, 19(9), 8207-8230. https://doi.org/10.1007/s13762-022-04086-y